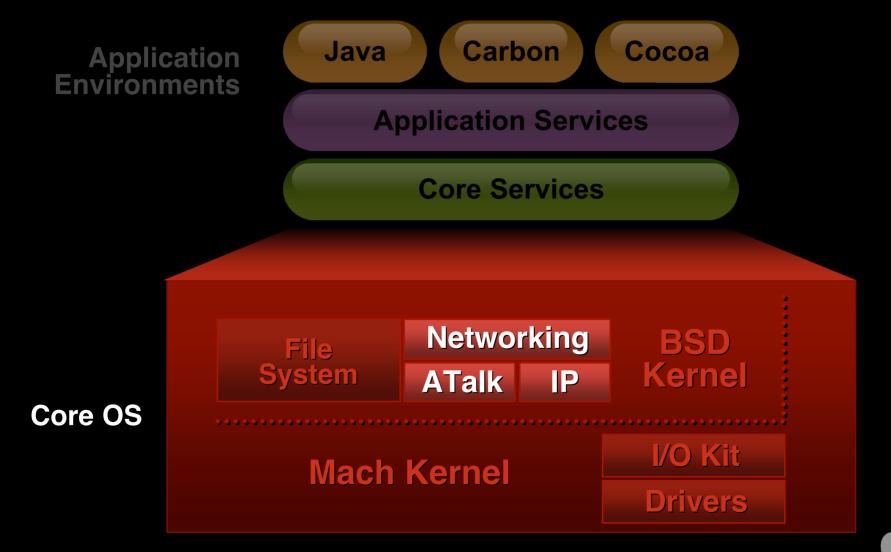


Advanced Mac OS X Networking

Session 809

Advanced Mac OS X Networking

Vincent Lubet Manager, Core OS Networking Team


Introduction

- Performance
- NKE
- IPSec
- IPv6

What You Will Learn

- How to take advantage of some of the new networking features
- How to get the best performance for networking applications
- The caveats of kernel programming

Mac OS X Advanced Networking

Performance for Network Applications

- Do not poll
 - Polling uses 100% of CPU
 - Hurts other processes
 - Wastes energy
 - Shortens portable autonomy
- OT sync-idle events is a form of polling

- Block or be event driven
- Use blocking mode with threads
 - Recycle threads if you can
- Be event driven
 - For sockets use **select**
 - For OT use async mode with notifiers
 - Run loop for network APIs above Sockets

- Open Transport on Mac OS X is slow
- A lot context switches
 - Emulation of execution levels
- Lookups are serialized
- 10–15% impact on performance
- Problems compound with number of endpoints

- Watch for buffer size
- Buffer size is critical for performance
 - Too small=high context switch overhead
 - Too large = starves VM for buffers
- Things to tune
 - Socket buffer size (SO_SNDBUF, SO_RCVBUF)
 - Size of buffer passed to send/receive calls
- Size of socket receive buffer directly affects TCP window size

- Minimize latency
 - Cooperative threads should be avoided
 - Stream data flow, do not wait for all data
- Disk I/O can affect network I/O
 - Same rules apply to both kinds of I/O
- Do not optimize at expense of efficiency
 - Tools: top, fs_usage, sample, . . •
- See Session 906 for more information

Network Kernel Extensions

Network Kernel Extensions

- Extends Networking services
- No need to recompile kernel
- Dynamic loading and unloading
- Running in the kernel comes with responsibilities

NKE Binary Compatibility Issues

- No real API, the Kernel is wide open
- Headers do not discern between what is public and what is private
- Kernel data structures and implementation details are exposed
- We cannot guarantee backward compatibility

NKE Binary Compatibility Issues

- Kernel data structures and functions will change
 - Bug fixes
 - New functionality
 - Performance enhancements

NKE Alternatives

- Avoid NKE when possible
- Use IOKit for network interfaces
 - IONetworkingFamily for Ethernet
 - IOSerialFamily for PPP
- Use IOKit user client
- Use **PF_NDRV** for protocol handlers in user space

NKE Do and Don't

- Do strip global symbols
- Do not look at kernel data structures
 - Pretend structures are opaque
- Sockets functions OK
 - Still lots of accessors are macros!

Jaguar Impact on NKE

- IPv6 and IPSec added to TCP/IP control block
- **mbuf** routines to isolate implementation
- **soconnect** intercept functions run before protocol
- soaccept now returns error instead of a socket
 Allows for EJUSTRETURN
- NKEMgr deprecated
 - New kernel event protocol in **PF_SYSTEM**
- ifnet can be detached

Jaguar Impact on NKE

- We have cleaned up the Dev SDK headers
 - Do not use anything that does not appear in a public header
- •We are making private more symbols
- No forward compatibility

NKE Call to Action

- Plan for sustainable Kernel APIs
- Use nm to list global symbols
- Use kextload to check properties and report common mistakes
- Work with us
 - Seed us with your KEXTs

Josh Graessley Core OS Networking

IPSec: Why

- Secure IP communications
 - Prevent Eavesdropping
 - Authenticate Origin
 - IETF Standard
- Virtual Private Networks
 - IPSec \neq VPN

IPSec: What

- Per packet Authentication and Encryption
 - Any IP 'transport' is supported
 - Transparent to applications
 - Host-to-host, no notion of "users"

IPSec: What

- Authenticate
 - AH (Authentication Header)
- Encrypt
 - ESP (Encapsulated Secure Payload)
- Compress
 - IPComp (IP Compression)

AH: Authentication Header

- Protect IP header and payload
 - Validate originator
 - Detect modifications
 - Detect duplicates
- Supports Multiple Algorithms
 - hmac-md5, hmac-sha1, . . •

ESP: Encapsulated Security Payload

- Encrypt payload
 - Protection against wiretap
 - Protects payload only, not IP header
- Authentication of payload
- Multiple Algorithms
 - Triple DES, AES, blowfish, . . •

IPComp: IP Compression

- Compress payload
 - Compress before encrypt
- Multiple algorithms
 - Jaguar supports inflate/deflate
- In kernel implementation is expensive
- Not widely used

IPSec: Modes

- Tunnel Mode
 - VPN scenario
 - Network-to-network
 - Host-to-network
- Transport Mode
 - Host-to-host

IPSec: Security Policies

- Policy defines filter
 - Source/destination address range
 - Source/destination port range
 - IP protocol (TCP, UDP, ICMP, . .) ·
- Policy defines rule
 - Bypass IPSec
 - Require IPSec
 - Use IPsec
 - Discard

IPSec: Security Association (SA)

- Defines algorithm
- Defines key
- One direction only
- May Timeout
 - Based on time
 - Based on traffic

IKE: Internet Key Exchange

• Authenticate remote host

- Pre-shared key
- Certificates
- Kerberos
- Exchange keys
- Negotiate algorithm

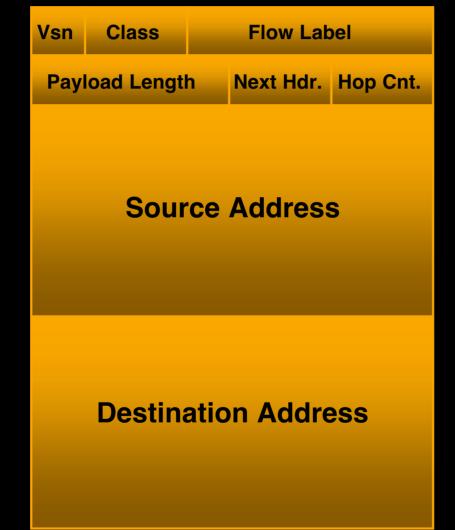
IPSec: APIs

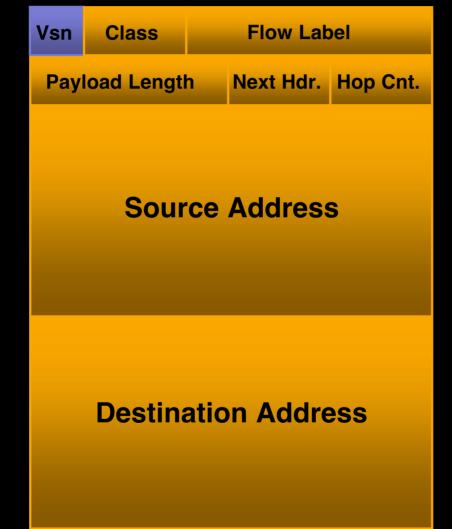
- **PF_KEY** socket
 - Set Security Policies
 - Set Security Associations
 - Receive notification of changes
 - Requires root
- **IP_SEC_POLICY** socket option
 - Per socket policy
 - Requires root to bypass IPSec

IPSec: Tools

- setkey
 - Set Security Policies
 - Set Security Associations
- racoon
 - Daemon implementing IKE
 - Exchanges Keys if Security Association is missing
 - Creates Security Association
 - Not running by default

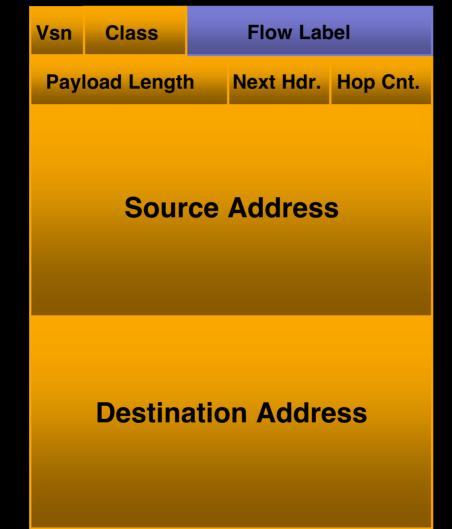
Josh Graessley Core OS Networking

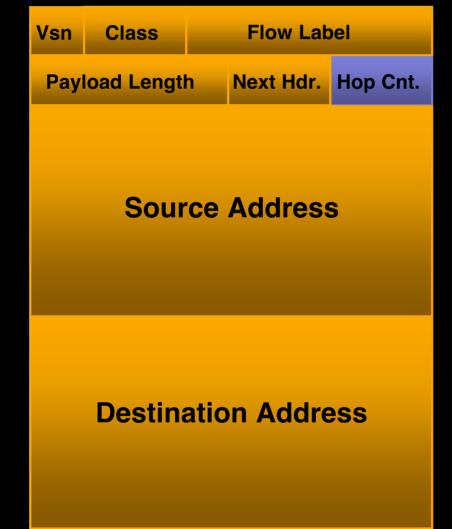


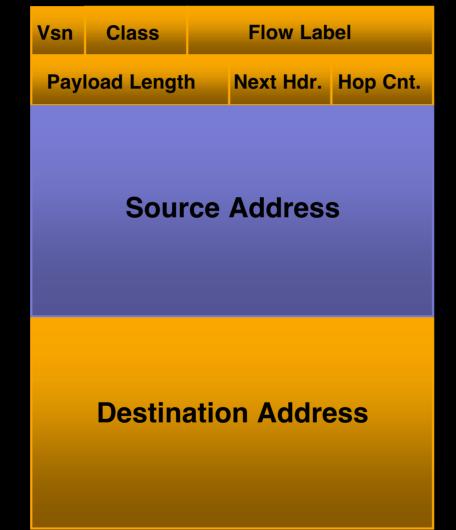

Advanced Mac OS X Networking: IPv6

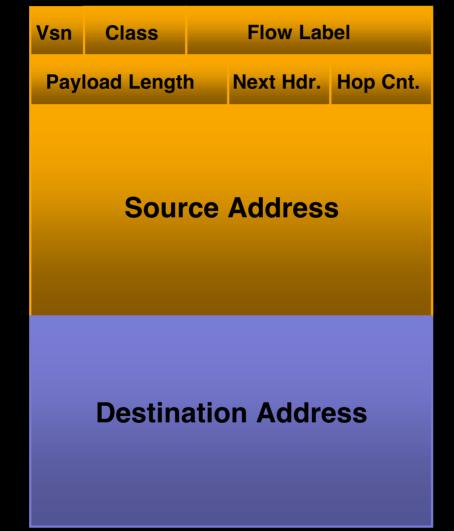
Laurent Dumont Core OS Networking

Motivations for IPv6


- Addresses Internet growth problems
 - Address Space exhaustion
 - Routing Meltdown
 - NAT breaks end-to-end connectivity
- International markets (Asia, Europe)
 - IPv4 Addresses are scarce
- Includes new standards
 - IPsec, multicast, autoconfiguration


Ú


Vsn	Class	Flow Label			
Payload Length		h	Next Hdr.	Hop Cnt.	
Source Address					
	Destina	atio	on Addre	ess	



Vsn Class	Flow Label				
Payload Lengtl	h	Next Hdr.	Hop Cnt.		
Source Address					
Destina	atio	n Addre	ess		

Vsn	Class	Flow Label			
Payl	oad Lengtl	h	Next Hdr.	Hop Cnt.	
Source Address					
	Destina	atio	n Addre	ess	

IPv6 Addresses

- 128 bits instead of 32
- From 4 billion to 340 undecillion $(3.4 * 10^3 38)$
- Addressing architecture
 - Classless Interdomain Routing
 - Address Structure
 - Unicast Addresses
 - Local Use Addresses
 - Multicast

IPv6 Address Architecture

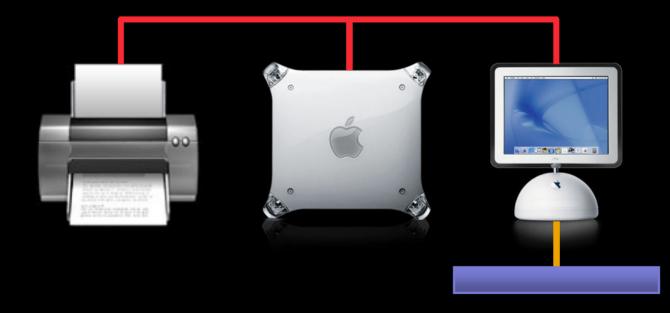
- IPv6 Address Scopes
 - Link-Local
 - Site-Local
 - Global

Globally Administered	Locally Administered	
8 Octets	8 Octets	

ICMPv6

- Error messages
- Echo request/reply
- Multicast Listener Discovery
- Neighbor Discovery
 - Replacement for ARP
 - Router Discovery
 - Prefix Discovery

IPv6 Auto-Configuration

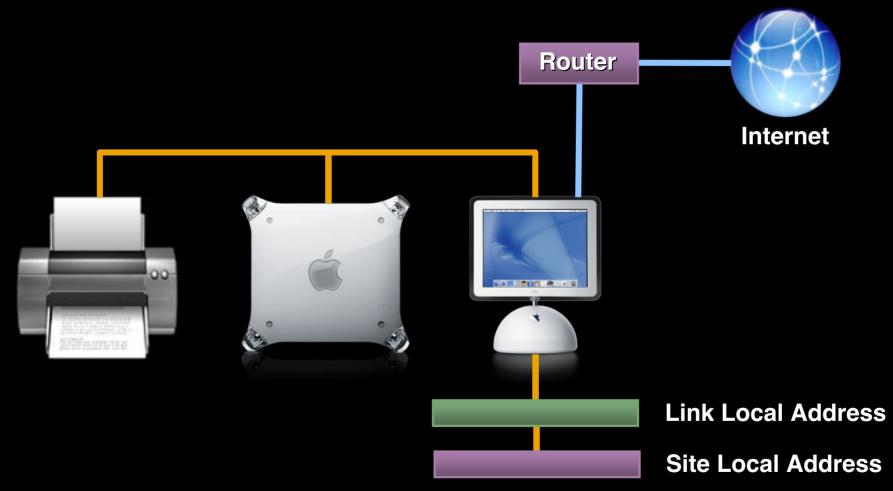

- AppleTalk-like ease of setup in an IP environment
 - Improved support for networking in the home, ad hoc networking, etc.
 - Auto-configuration designed in from the start
- Fits in with the ideas behind Rendezvous

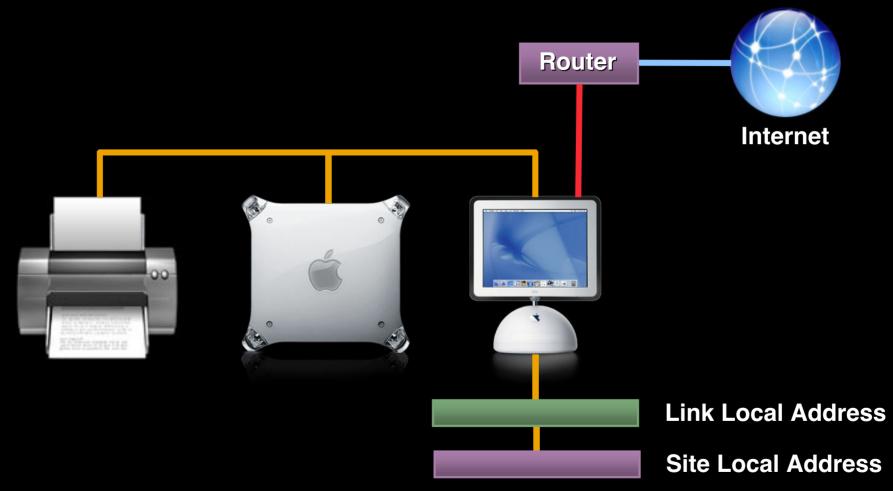
How Auto-Configuration Works

Link Local Address

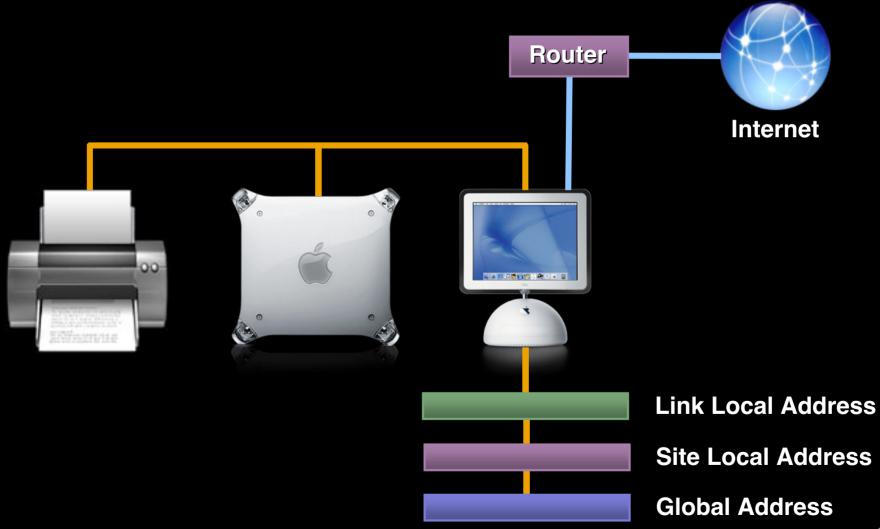
How Auto-Configuration Works

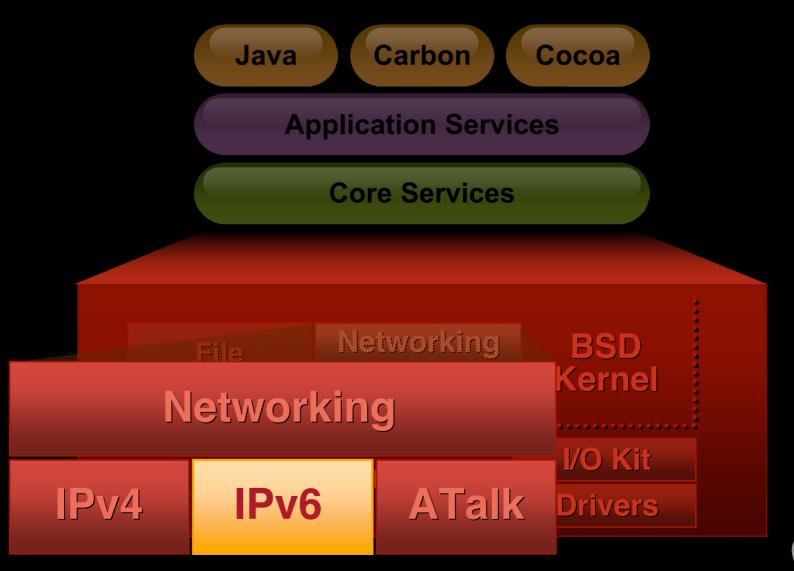
Link Local Address


How Auto-Configuration Works


Link Local Address Site Local Address

Ú


More Auto-Configuration



More Auto-Configuration

More Auto-Configuration

- Available in Jaguar
 - For developers and advanced users
 - No support in System Configuration yet
- Based on the Open Source work of KAME
 - Standard for BSD implementations
- Kernel, command-line tools, headers and libraries

- Support for Transition
 - Dual Stack implementation
 - 6to4: IPv6 tunnel over IPv4
 - IPv6 Routing
- Auto-configuration
 - Neighbor Discovery
- DNS for IPv6 in Jaguar
 - AAAA records via IPv4 DNS only

- Tools
 - ifconfig, ping6, traceroute6, netstat, route, tcpdump, rtsol
- Apps
 - ssh, ftp, telnet
- Good examples of Protocol Independent implementation

Be IP Version Agnostic

- IPv6 addresses are bigger (128 bits)
- Interfaces have multiple addresses
 - Do not identify an interface by an address
 - Do not assume AF_INET length, use **getifaddrs**
- Addresses can be autoconfigured
 - Multiple scopes

IPv6 in Mac OS X: APIs

- Basic BSD APIs (RFC 2553)
 - IPv4 Binary compatibility
 - Allows for IPv6/IPv4 independent programming
- getaddrinfo is the main address independent API
 - Use it instead of gethostbyname
- Check Jaguar man pages for new resolver calls:
 - getnameinfo, getipnodebyname, inet_pton, inet_ntop

IPv6 in Mac OS X: APIs

- Advanced BSD APIs (RFC 2292)
 - Provides access to new IPv6 only functionalities
 - Raw IPv6 socket standardization
- For higher level APIs—use CFNetwork
- For more details about protocol independence http://www.kame.net/newsletter/19980604

Roadmap

100 The Darwin Road Map	Room A1 Mon., 2:00pm
107 The Darwin Kernel	Civic Wed., 9:00am
108 Managing Kernel Extensions	Civic Wed., 10:30am
906 Developing for Performance	Hall 2 Fri., 9:00am
FF012 Core OS Networking	Room J1 Fri., 2:00pm

Who to Contact

Tom Weyer Network and Communications Evangelist **weyer@apple.com**

Vincent Lubet Manager, Core OS Networking Team vlubet@apple.com

http://developer.apple.com/wwdc2002/urls.html

For More Information

- KAME IPv6 and IPSec http://www.kame.net
- FreeBSD How-To http://www.freebsd.org/handbook/ipsec.html
- Other performance tips: Mac OS X Perf book http://developer.apple.com/techpubs/macosx/ Essentials/Performance
- Darwin programming documentation http://developer.apple.com/techpubs/macosx/Darwin

Tom Weyer Network and Communications Evangelist weyer@apple.com

(Provided by DHCP Server)

http://developer.apple.com/wwdc2002/urls.html

ŚWWDC2002

ŚWWDC2002

ŚWWDC2002